Self-assembly of a peptide amphiphile containing L-carnosine and its mixtures with a multilamellar vesicle forming lipid.

نویسندگان

  • V Castelletto
  • G Cheng
  • C Stain
  • C J Connon
  • I W Hamley
چکیده

The self-assembly of the peptide amphiphile (PA) hexadecyl-(β-alanine-histidine) is examined in aqueous solution, along with its mixtures with multilamellar vesicles formed by DPPC (dipalmitoyl phosphatidylcholine). This PA, denoted C(16)-βAH, contains a dipeptide headgroup corresponding to the bioactive molecule L-carnosine. It is found to self-assemble into nanotapes based on stacked layers of molecules. Bilayers are found to coexist with monolayers in which the PA molecules pack with alternating up-down arrangement so that the headgroups decorate both surfaces. The bilayers become dehydrated as PA concentration increases and the number of layers in the stack decreases to produce ultrathin nanotapes comprised of 2-3 bilayers. Addition of the PA to DPPC multilamellar vesicles leads to a transition to well-defined unilamellar vesicles. The unique ability to modulate the stacking of this PA as a function of concentration, combined with its ability to induce a multilamellar to unilamellar thinning of DPPC vesicles, may be useful in biomaterials applications where the presentation of the peptide function at the surface of self-assembled nanostructures is crucial.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilayers in amphiphilic mixtures connected by threadlike micelles: a self-consistent field theory study

Binary mixtures of amphiphiles in solution can self-assemble into a wide range of structures when the two species individually form aggregates of different curvatures. A specific example of this is seen in solutions of lipid mixtures where the two species form lamellar structures and spherical micelles respectively. Here, vesicles connected by thread-like micelles can form in a narrow concentra...

متن کامل

Self-assembly of a dual functional bioactive peptide amphiphile incorporating both matrix metalloprotease substrate and cell adhesion motifs.

We describe a bioactive lipopeptide that combines the capacity to promote the adhesion and subsequent self-detachment of live cells, using template-cell-environment feedback interactions. This self-assembling peptide amphiphile comprises a diene-containing hexadecyl lipid chain (C16e) linked to a matrix metalloprotease-cleavable sequence, Thr-Pro-Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln, and contiguous ...

متن کامل

Self-assembly of model DNA-binding peptide amphiphiles.

Peptide amphiphiles combine the specific functionality of proteins with the engineering convenience of synthetic amphiphiles. These molecules covalently link a peptide headgroup, typically from an active fragment of a larger protein, to a hydrophobic alkyl tail. Our research is aimed at forming and characterizing covalently stabilized, self-assembled, peptide-amphiphile aggregates that can be u...

متن کامل

Reversible deformation-formation of a multistimuli responsive vesicle by a supramolecular peptide amphiphile.

A systematic study of the ternary complex formation process for aromatic amino acids using ucurbit[8]uril (CB[8]) and a viologen amphiphile shows that the affinity of the amino acid needs to be higher or in a comparable range to that of CB[8] for the amphiphile in order to form the ternary complex. Based on these observations, a supramolecular peptide amphiphile and its corresponding vesicle ar...

متن کامل

Development of Biomimetic Surfaces by Vesicle Fusion

In this study fusion of lipid-peptide amphiphile vesicles is employed to form biomimetic coating materials that can modify cellular adhesion and growth on solid substrates. Ellipsometry has been used to monitor vesicle fusion at different concentrations on hydrophilic surfaces and to identify adsorption as its limiting step. Incorporation of small amounts of RGD containing peptide amphiphiles i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 28 31  شماره 

صفحات  -

تاریخ انتشار 2012